[ Sharing ]  Introducing TensorFlow Decision Forests
  Comments:

Introducing TensorFlow Decision Forests

  By : Leadtek AI Expert     1477

AI News Sharing

TF-DF is a collection of production-ready state-of-the-art algorithms for training, serving and interpreting decision forest models (including random forests and gradient boosted trees). You can now use these models for classification, regression and ranking tasks - with the flexibility and composability of the TensorFlow and Keras.


  • Beginners will find it easier to develop and explain decision forest models. There is no need to explicitly list or pre-process input features (as decision forests can naturally handle numeric and categorical attributes), specify an architecture (for example, by trying different combinations of layers like you would in a neural network), or worry about models diverging. Once your model is trained, you can plot it directly or analyze it with easy to interpret statistics.


  • Advanced users will benefit from models with very fast inference time (sub-microseconds per example in many cases). And, this library offers a great deal of composability for model experimentation and research. In particular, it is easy to combine neural networks and decision forests.

Read Full Articles Here

https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.html





Comments as following